SECTION (10 MARKS)

- 1. The followings are base quantities unit **EXCEPT**
 - A. kilogram
 - B. newton
 - C. metre
 - D. Kelvin

Referring to Figure 1, calculate the effective force along the x-axis.

- A. 30.00 N B. 40.20 N C. 51,96 N
- D. 92.37 N
- 3. The Newton's third law states that when a contact force is exerted on one object by another, the second object exerts an _____ and opposite force on the first object.
 - A. different
 - B. parallel
 - C. equal
 - D. opposite

4. _____ is a form of energy that flows from hotter region to colder region.

- A. Temperature
- B. Heat
- C. Friction
- D. Pressure

5. _____ is the unit for absolute temperature.

- A. Kelvin
- B. Celcius
- C. Fahrenheit
- D. Candela
- 6. Figure 2 shows one application where pressure is transmitted equally through a liquid. The principle that governs the transfer of force from *effort to load* is

Figure 2: brake hydraulic system

- A. Phillip's principle
- B. Pascal's principle
- C. Victoria principle
- D. Dublin's principle
- 7. The mechanical advantage of a machine is the ratio of the load to the _____.
 - A. distance.
 - B. friction.
 - C. resistance.
 - D. effort.

- 8. Torque is the product of force and ______ distance from the centre of rotation.
 - A. force and parallel distance
 - B. force and straight distance
 - C. force and perpendicular distance
 - D. force and curved distance
- 9. The calculated engine power of an engine is also known as ______.
 - A. the engine power
 - B. the brake power
 - C. the torque power
 - D. the indicated power

10. Indicated power (*IP*) is the power that is developed ______.

- A. inside the engine cylinders
- B. outside the engine cylinders
- C. along the engine cylinders
- D. under the engine cylinders
- 11. Power is defined as the rate of doing work, i.e. Power = _____.
 - A. work done/ time taken
 - B. time taken/ work done
 - C. pressure/ cross-sectional area
 - D. force/ time taken
- 12. Which of the following can be totally compressed?
 - A. Solids
 - B. Liquids
 - C. Gas
 - D. Plasma

13. In materials, there are three basic type of stress **EXCEPT** ______.

- A. tensile stress.
- B. compressive stress
- C. shear stress.
- D. strain stress.
- 14. Simple harmonic motion equation is described by
 - A. $a = -\omega^2 x^2$
 - B. $a = -\omega x$
 - C. $a = -\omega^2 x$
 - D. $a = -\omega x^2$

15. A barometer is an instrument used to measure ______.

- A. direct current
- B. relative density
- C. absolute temperature
- D. atmospheric pressure
- 16. A steel tie rod used in a suspension system has a diameter of 0.015 m. Determine the tensile stress in the tie rod when a tensile force of 600 N is applied to it under braking.
 - A. $0.4 \times 10^6 \text{ N/m}^2$
 - B. $2.4 \times 10^{6} \text{ N/m}^{2}$
 - C. $3.4 \times 10^6 \text{ N/m}^2$
 - D. 10.4 x 10⁶ N/m²
- 17. 4 m³ of gas at 323 K are heated at constant pressure until the volume is tripled. Determine the final temperature of the gas.
 - A. 323 K
 - B. 646 K
 - C. 717 K
 - D. 969 K

- 18. Young's modulus, E is defined as
 - A. stress x strain
 - B. tensile stress/ tensile strain
 - C. sagging x hogging
 - D. sagging/ hogging
- 19. Figure 3 shows a simple hydraulic system. A_1 and A_2 are cross sectional area of the piston. Given areas $A_1 = 5 \text{ m}^2$ and $A_2 = 25 \text{ m}^2$. The minimum force F_1 required to lift a load of 1300 kg is:

(You may use $g = 10 \text{ m/s}^2$)

Figure 3. A hydraulic jack system

- A. 500 N
- B. 600 kg
- C. 2600 N
- D. 3400 kg
- 20. Archimedes' principle relates buoyancy to displacement. It states that any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object. State the reason why a steel ship floats at sea, even though steel is denser than sea water.
 - A. The steel ship floats because it displaces bigger volume of sea water compared to its own volume.
 - B. The steel ship floats because the propellers spin quickly enough.
 - C. The steel ship floats because sea water could not flow into its compartment.
 - D. The steel ship floats because its surface area is greater than the area of sea water displaced..