Ch 1 - Fluid Mechanics

1.1 Density

$P=|F / A|$ or
$P d A=d F$

SI units of Pressure is the Pascal
1 Pascal = $1 \mathrm{~N} / \mathrm{m}^{2}$

Density, ρ

(The Greek, r, rho) $\rho=m / V$

Some common densities

material	cgs	mks
Water	1	1,000
Ice	0.917	917
Air	0.00129	1.29
Helium (He)	0.00018	0.179
Copper (Cu)	8.96	8,960
Gold (Au)	19.3	19,300
Platinum (Pt)	21.4	21,400
Iridium (Ir)	22.4	22,400
Aluminum	2.7	2,700
Lead (Pb)	11.34	11,340
Mercury (Hg)	13.6	13,600

Important Note:
If you notice, air (and other gasses) are approximately 1000 times less dense than liquids and solids

That means the spacing between molecules is 10 times greater in all three dimensions $(1 \times w \times h) \rightarrow(10 \times 10 \times 10=1000)$

Example using density

$$
\begin{aligned}
& P=F / A ; \quad F=P A \text { where } P=\rho g h \\
& F=-k x ; \quad \text { and } F=\rho g h A \\
& k x \quad=\rho g h A \\
& h=k \quad x / \rho \quad g \quad A \\
& h=1000 * 0.005 /\left(1000(9.8) \pi 0.01^{2}\right) \\
& h=1.62 \text { meters }
\end{aligned}
$$

1.2 Pressure

Pascal's Law

A change in pressure to a fluid is transmitted undiminished to every point of the fluid and to the wall
of the container
$P_{1}=P_{2}$
$F_{1} / A_{1}=F_{2} / A_{2}$
$F_{1} A_{2}=F_{2} A_{1}$

Pressure below a surface must include atmospheric pressure,
P_{0}, as well pressure
attributable to the liquid
above, Pliq
$F_{\text {weight }}=m g$
$\rho=m / V ; m=\rho V$
$F_{w}=\rho \vee g$
$F_{w}=\rho(A h) g$
$F_{w}=\rho A h g$
$F_{w} / A=\rho A h g / A$
$P_{\text {liq }}=\rho g h$
$h=$ depth of liquid
$P=P_{0}+P_{\text {liq }}$
$P_{0}=1.013 \times 10^{5} \mathrm{~Pa}$
Pliq is also called Gauge

See bottom of page

$$
\begin{array}{cl}
\text { Pyramids of Egypt } \\
& =P_{2} \\
P_{1} & =F_{2} / A_{2} \\
F_{1} / A_{1} & =\rho_{\mathrm{H} 20} \mathrm{~h} g \\
\rho_{\text {stone }} \mathrm{h}_{\text {stone }} g \\
2500(2) g & =1000 \mathrm{~h} g \\
\mathrm{~h} & =5 \text { meters }
\end{array}
$$

So the water column must remain 5 meters higher than the stone block

Tubes have been found below the pyramids of Egypt to a central chamber, possibly leading to a dried lake.
If this is the case, one method to raise large stone blocks [($2 \times 2 \times 2$) meters] is application of Pascal's Law

Example: Force on a dam with depth
$\Delta F=P \quad \Delta A$
$\Delta F=\rho g(H-y) w \Delta y$ (use Calculus)
$F=\frac{1}{2} \rho g w H^{2}$
What is the force on a 80 meter wide dam which has a depth of 30 meters?
$F=\frac{1}{2} \quad \rho \quad g \quad w \quad H^{2}$
$F=\frac{1}{2}(1000) 10(80) 30^{2}$

Pressure		$\mathrm{F}=360 \mathrm{MN}$ or the same weight as 15,000 sUVs		
Pressure readings referenced in every day usage generally is commonly referred to as gauge pressure. (i.e. 32 pounds / in ${ }^{2}$ in our car tires. This is $32 \mathrm{lb} / \mathrm{in}^{2}$ beyond atmospheric pressure) Absolute pressure (P) is atmospheric pressure (P_{0}) plus gauge pressure ($\rho \mathrm{g} \mathrm{h}$) $P=P_{0}+\rho g h$		Manometer A		The key to the manometer is that the place of attachment, point A, is at the same level of the beginning measurement of h. Points A \& B must be at same pressure, (at same level), so pgh is the gauge pressure.
Common units of pressure	Compared to Po (1 atm)	A vacuum forms at the head of the column when placed in the upright position. Barometer		If the outside pressure goes higher ... the surface of the Hg is pushed
Atmosphere	1 atm			down even more...so the Hg in the
Hg column	760 mm			column is pushed up in the column
Torr	760 torr			more.
Pascal	$1.013 \times 10^{5} \mathrm{~Pa}$			
Bar	1.013 bar			Vise versa if the outside pressure
Mbar	1013 mbar			goes down.

$\mathrm{lb} / \mathrm{in}^{2} \mathrm{l}$	
The above Mercury column experiment is a very powerful demo. But we don't perform this demo because Hg is a hazardous chemical. So we instead we decide to use water. Is this feasible in our classroom?	$\begin{array}{ll} P+\rho g h & =P_{0}+\rho g h \\ 0+\rho g h & =P_{0}+0 \quad h \text { is } 0 \text { meters above the surface } \\ \rho g h \quad & =P_{0} \\ h \quad & =P_{0} / \rho \quad 9 \\ h & =1.013 \times 10^{5} /(1000)(9.8) \\ h & =10.3 \text { meters } \end{array}$
1.3 Static Equilibrium in Fluids: Pressure and Depths	
Covered above and below in 1.6	
1.4 Archimedes' Principle and Buoyant Forces	
The buoyant force on an object is equal to the weight of the displace fluid	
Everyone should cover this subject during lab class. After all labs are complete, we will review this subject. Common topics usually covered during lab class are	The volume of the displace fluid is V If the displace fluid is water then the weight of the displaced water is $\mathrm{mg}=\left(\rho_{\mathrm{H} 2 \mathrm{O}} \mathrm{~V}\right) g \rightarrow \text { so } \mathrm{F}_{\mathrm{B}}=\left(\rho_{\mathrm{H} 2 \mathrm{O}} \mathrm{~V}\right) g$ So if a crown displaces $30 c c^{\prime}$ s of water ($c c=\mathrm{cm}^{3}$, also $c c=\mathrm{ml}$ and 1 cc of water has the mass of 1 gram)

Archimedes Principle: Buoyancy

1.5 Application of Archimedes' Principle

Buoyancy force...just sum up vectors...

You see that there is a $F_{\text {Net }}$ up.

1.6 Fluid Flow and Continuity

There are two main types of fluid flow.

- Steady (laminar)
- Turbulent

Viscosity measures the internal friction of a fluid (i.e. Elmer's glue has more internal friction than water)

To be able to model real fluids we must make a few assumptions (which usually are

Equations

$V_{\text {cyclinder }}=A^{*} x ; \quad \rho=m / V ; \quad \bar{v}=\frac{\Delta x}{\Delta t}$
$a_{\Delta X_{1}}^{A_{2}}$
completely true).

- The fluid is non-viscous
- The fluid is steady
- The fluid is incompressible
- The fluid has no rotation

A wide river with a flow rate of 10,000 gallons per minute (g pm) suddenly narrows. What occurs?
ans: the water flows at a much faster velocity

Most everyone already knew this answer from watching TV, movies, or other personal experience.

Why? The $10,000 \mathrm{gpm}$ still must flow at the same rate to make it through the gorge. If the $10,000 \mathrm{gpm}$ doesn't flow at $10,000 \mathrm{gpm}$, it backs up and forms a lake behind the gorge.

Just for fun... the mass of 1 gallon of water is approximately 4 kg . So what is the mass of

$V_{1}=A_{1} * x_{1}$	$V_{2}=A_{2} * x_{2}$
$\rho=m_{1} / V_{1}$	$\rho=m_{2} / V_{2}$
$\rho=m_{1} / A_{1} x_{1}$	$\rho=m_{2} / A_{2} x_{2}$
$\Delta x_{1}=v_{1} \Delta t$	$\Delta x_{2}=v_{2} \Delta t$
$\rho=m_{1} / A_{1} v_{1} t_{1}$	$\rho=m_{2} / A_{2} v_{2} t_{2}$

Since density of water is the same in both equations, we can set the two equations equal to each other
$m_{1} / A_{1} v_{1} \dagger_{1}=m_{2} / A_{2} v_{2} \dagger_{2}$
$A_{2} v_{2}\left(m_{1} / t_{1}\right)=A_{1} v_{1}\left(m_{2} / t_{2}\right)$
\leftarrow Now let's look at the example to the left.
The mass per unit time was constant in either the wide part of the river or when the river flowed through the gorge.
(It was 40,000 kg / min)

Since $m / \Delta t$ is constant $m_{1} / \Delta t=m_{2} / \Delta t$ and the equation simplified down to

$$
A_{1} v_{1}=A_{2} v_{2}
$$

water flowing out of the gorge?
 $10,000 \mathrm{gal} / \mathrm{min}(4 \mathrm{~kg} / \mathrm{gal})=40,000 \mathrm{~kg} / \mathrm{min}$

One last note on a particle in Laminar flow.
The path taken by a fluid under steady flow is called a stream line (block lines), these form curves (parts of multiple circles). Thus the velocity vector is tangent to each one of these stream lines. I'm showing one velocity vector at point P.

Example:
The channel at the Aquaduct at
Segovia (Spain) has a channel that measures 1.5 wide by 1.8 tall measured in meters. Immediately before the aquaduct is broken by a severe earthquake (fictional event) the water was flowing at $10 \mathrm{~cm} / \mathrm{sec}$ while being $1 / 3$ full, what is the diameter of water stream when it reaches the ground 28 meters below?

Water volume per unit time is
$1.5 \mathrm{~m}(1 / 3 * 1.8 \mathrm{~m})(0.1 \mathrm{~m} / \mathrm{s})$
$\mathrm{V} / \mathrm{t}=0.09 \mathrm{~m}^{3} / \mathrm{sec}$
Or Area (velocity)
$1.5 \mathrm{~m}\left(1 / 3^{\star 1.8} \mathrm{~m}\right)(0.1 \mathrm{~m} / \mathrm{s})$
$A v=0.09 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{V} / t=A_{f} \quad \mathrm{~V}_{\mathrm{f}}$
$0.09=A_{f}(23.6)$
$A_{f}=0.0038 \mathrm{~m}^{2}$
$\pi r^{2}=0.0038$
$r=3.5 \mathrm{~cm}$

Energy of position transfers to energy of position
$\frac{1}{2} m v^{2}=m g h$
$v^{2}=2\left(10 \mathrm{~m} / \mathrm{s}^{2}\right) 28 \mathrm{~m}$
$v_{\text {bottom }}=23.6 \mathrm{~m} / \mathrm{s}$

1.7 Bernoulli's Equations

Bernoulli's Beach Ball

 FM-C-BBDerivation: $P_{1}-P_{2}$

It's already been established that pressure is measured in $\mathrm{N} / \mathrm{m}^{2}$; and volume is measured in m^{3} So what are the units of PV (as in PV = nRT)?

$$
\mathrm{N} / \mathrm{m}^{2 \star} \mathrm{~m}^{3}=\mathrm{Nm}
$$

(units of Work and energy)

So just from the units we expect: Work $=\Delta P V$
Let's look at this from another view point
Work $=F \Delta x$
Work $=F \Delta x(A / A) \quad$ multiplying by 1
Work $=(F / A)(\Delta x A)$

So if pressure is changed, you do work
Work $=P_{1} V+\left(-P_{2} V\right) \& \quad$ Work $=\Delta K$
But what if the pipe slopes up or down.
Gravity will also do work on the system.
Work $=\Delta K+\Delta U$
$P_{1} V-P_{2} V=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}+m g h_{2}-m g h_{1}$
$P_{1} V+\frac{1}{2} m v_{1}{ }^{2}+m g h_{1}=P_{2} V+\frac{1}{2} m v_{2}{ }^{2}+m g h_{2}$
So final equals initial....or no changes...so
PV $+\frac{1}{2} m v^{2}+m g h \quad$ constant
Divide through by volume
Work $=\Delta P \quad V \quad$...very similar to above.

$$
\begin{array}{ll}
P+\frac{1}{2}(m / V) v^{2} & +(m / V) g h=\text { constant } \\
P+\frac{1}{2} \rho v^{2} & +\rho g h \quad=\text { constant }
\end{array}
$$

So we can conclude that a change in pressure for a constant volume is the amount of work done on a system.

A Venturi tube may be used as a fluid flow meter. If the difference in pressure is $P_{1}-P_{2}=21.0 \mathrm{kPa}$, find the fluid flow rate in cubic meters per second, given that the radius of the outlet tube is 1.00 cm , the radius of the inlet tube is 2.00 cm , and the fluid is gasoline ($\rho_{\text {gas }}=700 \mathrm{~kg} / \mathrm{m}^{3}$).

$$
\begin{array}{lll}
\hline A_{\text {in }}=\pi(2)^{2} ; & P+\frac{1}{2} \rho v^{2}+\rho g h & =P_{f}+\frac{1}{2} \rho v_{f}{ }^{2}+\rho g h_{f} \\
A_{\text {out }}=\pi(1)^{2} & P_{\text {in }}+\frac{1}{2} \rho v_{\text {in }}{ }^{2} & =P_{\text {out }}+\frac{1}{2} \rho v_{\text {out }}{ }^{2} \\
A_{\text {in }} v_{\text {in }}=A_{\text {out }} v_{\text {out }} & P_{\text {in }}-P_{\text {out }}+\frac{1}{2} \rho v_{\text {in }}{ }^{2} & =\frac{1}{2} \rho v_{\text {out }}{ }^{2} \\
4 v_{\text {in }}=1 v_{\text {out }} & 21,000+\frac{1}{2} \rho v_{\text {in }}{ }^{2} & =\frac{1}{2} \rho\left(4 v_{\text {in }}\right)^{2} \\
v_{\text {out }}=4 v_{\text {in }} & & 15 v_{\text {in }}{ }^{2} \\
& v_{\text {in }}=2 \mathrm{~m} / \mathrm{s} & =(2 / \rho) 21,000
\end{array}
$$

| Another example to |
| :--- | :--- |
| the right... |
| So what is h_{2} ? |
| Wint: |
| What is the weight |
| of the two columns? |

| $P_{1}=P_{\text {at }}$ | $v_{1}=0$ (1) |
| :--- | :--- | | What is $v_{2} ?$ |
| :--- |
| $P \quad+\frac{1}{2} \rho v^{2}+\rho g h=P_{2}+\frac{1}{2} \rho v_{2}{ }^{2}+\rho g h_{2}$ |
| $P_{a t}+0 \quad \rho g h=P_{a t}+\frac{1}{2} \rho v_{2}{ }^{2}+0$ |
| $\rho g h=\frac{1}{2} \rho v_{2}{ }^{2}$ |

1.9 Viscosity and Surface Tension

We have ignored internal friction (like usual), but how would our discussion change if we didn't?
As with surface friction, friction that fluid experiences is also ALWAYS opposed to its flow (come speak to me if you don't agree with "always", if you don't believe this, it comes from a misinterpretation of the definition of a system)
$P_{1}-P_{2}=8 \pi n \vee L / A$; where eta is the coefficient of viscosity W Viscosity was originally measured in poise where water at $20^{\circ} \mathrm{C}$ was 0.01 poise (dyne sec/cm ${ }^{2}$). We use SI units (see table). 1 poise $=0.1 \mathrm{Ns} / \mathrm{m}^{2}$
Multiply both sides of the above equation and solve for $v A$ $v A=\left(P_{1}-P_{2}\right) A^{2} / 8 \pi n L \quad($ remember $V / \dagger=v A)$

TABLE 15-3

Viscosities $(\boldsymbol{\eta})$ of Various Fluids $\left(\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right)$

Honey	10
Glycerine $\left(20^{\circ} \mathrm{C}\right)$	1.50
10 -wt motor oil $\left(30{ }^{\circ} \mathrm{C}\right)$	0.250
Whole blood $\left(37^{\circ} \mathrm{C}\right)$	2.72×10^{-3}
Water $\left(0^{\circ} \mathrm{C}\right)$	1.79×10^{-3}
Water $\left(20^{\circ} \mathrm{C}\right)$	1.0055×10^{-3}
Water $\left(100^{\circ} \mathrm{C}\right)$	2.82×10^{4}
Air $\left(20^{\circ} \mathrm{C}\right)$	1.82×10^{-5}

Capyright © 2007 Pearson Frontlos Hall. Ine

